contact@neovisara.com

Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems. Specific applications of AI include expert systems, natural language processing (NLP), speech recognition and machine vision.

 

AI programming focuses on three cognitive skills: learning, reasoning and self-correction.

Deep Learning Intro

  • What are the Limitations of Machine Learning?
  • What is Deep Learning?
  • Advantage of Deep Learning over Machine learning
  • Reasons to go for Deep Learning
  • Real-Life use cases of Deep Learning

Artificient intelligence Intro

  • History of AI
  • Modern era of AI
  • How is this era of AI different?
  • Transformative Changes
  • Role of Machine learning & Deep Learning in AI
  • Hardware for AI (CPU vs. GPU vs. TPU)
  • Software Frameworks for AI
  • Deep Learning Frameworks for AI
  • Key Industry applications of AI

Overview of important python packages for Deep Learning

TensorFlow

  • What is Tensor Flow?
  • Tensor Flow code-basics
  • Graph Visualization
  • Constants, Placeholders, Variables
  • Tensorflow Basic Operations
  • Linear Regression with Tensor Flow
  • Logistic Regression with Tensor Flow
  • K Nearest Neighbor algorithm with Tensor Flow
  • K-Means classifier with Tensor Flow
  • Random Forest classifier with Tensor Flow

Neural Networks using TensorFlow

  • Quick recap of Neural Networks
  • Activation Functions, hidden layers, hidden units
  • Illustrate & Training a Perceptron
  • Important Parameters of Perceptron
  • Understand limitations of A Single Layer Perceptron
  • Illustrate Multi-Layer Perceptron
  • Back-propagation – Learning Algorithm
  • Understand Back-propagation – Using Neural Network Example
  • TensorBoard

Deep Learning Networks

  • What is Deep Learning Networks?
  • Why Deep Learning Networks?
  • How Deep Learning Works?
  • Feature Extraction
  • Working of Deep Network
  • Training using Backpropagation
  • Variants of Gradient Descent
  • Types of Deep Networks
  • Feed forward neural networks (FNN)
  • Convolutional neural networks (CNN)
  • Recurrent Neural networks (RNN)
  • Generative Adversal Neural Networks (GAN)
  • Restrict Boltzman Machine (RBM)

Convolutional Neural Networks

  • Introduction to Convolutional Neural Networks
  • CNN Applications
  • Architecture of a Convolutional Neural Network
  • Convolution and Pooling layers in a CNN
  • Understanding and Visualizing a CNN
  • Transfer Learning and Fine-tuning Convolutional Neural Networks

Recurrent Neural Networks

  • Intro to RNN Model
  • Application use cases of RNN
  • Modelling sequences
  • Training RNNs with Backpropagation
  • Long Short-Term Memory (LSTM)
  • Recursive Neural Tensor Network Theory
  • Recurrent Neural Network Model

Restricted Boltzmann Machine

  • What is Restricted Boltzmann Machine?
  • Applications of RBM
  • Collaborative Filtering with RBM
  • Introduction to Autoencoders & Applications
  • Understanding Autoencoders

Deep Learning with TFlearn

  • Define TFlearn
  • Composing Models in TFlearn
  • Sequential Composition
  • Functional Composition
  • Predefined Neural Network Layers
  • What is Batch Normalization
  • Saving and Loading a model with TFlearn
  • Customizing the Training Process
  • Using TensorBoard with TFlearn
  • Use-Case Implementation with TFlearn

Deep Learning with Keras

    •     Define Keras
  • How to compose Models in Keras
  • Sequential Composition
  • Functional Composition
  • Predefined Neural Network Layers
  • What is Batch Normalization
  • Saving and Loading a model with Keras
  • Customizing the Training Process
  • Using TensorBoard with Keras
  • Use-Case Implementation with Keras
  • Intuitively building networks with Keras

Applications of Deep Learning

  • Computer Vision
  • Text Data Processing
  • Image processing
  • Audio & video Analytics
  • Internet of things (IOT)

Case Studies